DEEP LEARNING FOR MANUFACTURING

Predicting and Preventing Manufacturing Defects

Sumit Sinha Digital Lifecycle Management (DLM) WMG, University of Warwick

TABLE OF CONTENTS

FRAMEWORK

Π

Overview of the problem and the proposed solution framework

02

CHALLENGES

Challenges faced in application of Artificial Intelligence within manufacturing systems

SOFTWARE

How the library "Deep Learning for Manufacturing (dlmfg)" helps solve these challenges

COMPETITIVE ADVANTAGE

Potential benefits that can be expected on application of CAE and AI software within the closedloop framework

Intelligent & Automated Root Cause Analysis (RCA) for multi-stage production/assembly systems

Synthesis of a system: Backward Propagation

Artificial Intelligence: Deep Learning

Analysis of a system: Forward Propagation *CAE Simulation*

 \boldsymbol{s} represents the sample from the population

 $\sigma(\widehat{Y}[s]^i)$ represents the model uncertainity distribution for the prediction $Y[s]^i$

 \hat{F}, \hat{X} are estimates for F and X while *i* represents the interation that goes from i = 1, 2, 3 to N until the model error is below the required threshold ϵ s represents the sample from the population

 $\pmb{\sigma}(\widehat{\pmb{Y}}[\pmb{s}]^i)$ represents the model uncertainity distribution for the prediction $\pmb{Y}[\pmb{s}]^i$

s represents the sample from the population

 $\sigma(\widehat{Y}[s]^{l})$ represents the model uncertainity distribution for the prediction $Y[s]^{l}$

s represents the sample from the population

 $\sigma(\widehat{Y}[s]^i)$ represents the model uncertainity distribution for the prediction $Y[s]^i$

GitHub Project *: https://github.com/sumitsinha/Deep_Learning_for_Manufacturing

Documentation**: <u>https://sumitsinha.github.io/Deep_Learning_for_Manufacturing/html/index.html</u>

SOFTWARE - NOVELTY

Uncertainty Quantification

Probabilistic Model using

Bayesian Inference Used to quantify the uncertainty of predictions using approximate Bayesian inference

System Dimensionality

Active Learning

Adaptive sampling strategies to handle the dimensionality of the system

3D CNN Architecture*

Architecture Selection

Optimized 3D Convolutional neural network model architectures

Gaussian Mixture based Multi-Mode Output Model Used to handle the collinearities present within a system

The library includes implementation of novel research and development to solve the stated challenges

*Sinha, S., Glorieux, E., Franciosa, P., & Ceglarek, D. (2019, June). 3D convolutional neural networks to estimate assembly process parameters using 3D point-clouds. In Multimodal Sensing: Technologies and Applications (Vol. 11059, p. 110590B). International Society for Optics and Photonics.

SOFTWARE - SOLUTIONS

The library also includes datasets and key modules for various tasks not included in standard deep learning libraries,

that help solve the model transferability challenges

SOFTWARE – CASE STUDY

No of Training Samples

If data is collected at stage 3, the model converges with 1000 training samples with a root mean square error (RMSE) of 0.14 and **R-squared value of 0.97**

Testing is done up to double of the specification limit used for training

COMPETITIVE ADVANTAGE

Application and integration of CAE Simulation with deep learning ensures early estimation and prediction of process parameter variations hence they can be prevented from manifesting into product defects

COMPETITIVE ADVANTAGE

Current Scenario

Only Product Data

Only having product data can only be used for monitoring and not RCA

- Limited RCA capabilities/only monitoring
- Requirement of manual expertise
- No/limited data for AI model training

Process data sensors for all parameters

Directly obtain process data for each parameter without the need for any learning

High RCA Capabilities

• High costs

Difficult to setup within
an online system

Product Data + CAE Simulation + Artificial Intelligence

Use AI model trained on real and simulated data to model relationship and suggest minimum additional process sensors in various sub-stages of the system

- Low costs
- High RCA Capabilities
- Strategic sensor placement

THANK-YOU

Does anyone have any questions?

CONTACT

<u>sumit.sinha.1@warwick.ac.uk</u> +44 (0) 7570200029

IMC, WMG, University of Warwick in linkedin.com/in/sumit-sinha-32891956