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Problem & Motivation

[ Problem: Product quality = detection of geometric errors ]

Multi-Stage Assembly Station 3D Optical Scanner Quality requirements
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un_\ Zero Defect Manufacturing

Cé? Right First Time

P .
@ Shorten NPI lead time
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(" Process Parameters (y): ) ( Object point cloud data ) Challenges
(1) Locators; (2) Clamps; (3) joining _ _ _
@ - High resolution point cloud data
- Deformable Parts
Root Causes (subset of y): Object Shape Error (X) - Fault Multiplicity for 6-sigma
\ any of the process parameters out of nominal ) \ ) i ﬁgsst:iynf&réic;lvfeigfZfages

[ Goal: Automated Root Cause Analysis (RCA) of geometric error during assembly ) W
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Challenges & Objectives

Challenges

|. High resolution point cloud data

State-of-the-art Limitations

I. Not scalable to point cloud data

01 Introduction

Objectives

I. Object shape error estimation

l1l. Consider single fault or
orthogonal multiple faults

[1l. Model with high
discriminative ability

V. No samples at design stages

V. Use limited sensor data

V. Data augmentation using
CAE Simulations

W
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Object Shape Error Estimation

02 Methodology

Example

Nominal Part /

Actual part with shape errs

)y

Schematic Part

|2mm |3mm |2mm |1m

Example of cross section with shape error

Current Approaches for

ROOL C Analvsi Proposed Current approaches for
?Ot_ - aulse na %’S'S Object Shape Error Estimation Object Detection Methods
(statistical approaches) (deep learning approach) (VoxNet)
3mm o[ofTfa]ofo]o
:ow o ix[2 3 2 1] 2o zmmy o 0 { O[o[Tha|o
Fo g I | 1lofofofo]o
[o]2 2]1]ofo]
f(x) Shape Error £(2) SEpe Error f(x) Shape Error

U

y (Root Cause)

U

vy (Root Cause)

U

Object Classification

\ L

Limitations
- No scalable to point cloud data |:>

- Single Fault / orthogonal m-faults
- Statistical linear models

Addressed in this paper
- High resolution point cloud data

- Fault Multiplicity for 6-sigma
- No samples at design stages

Limitations

<:| - Only object detection
- Binary or RGB features




M eth O d O I O gy 02 Methodology

Object Shape Error Response (OSER) is based on
Bayesian 3D Convolutional Neural Networks (CNN) and Computer Aided Engineering (CAE) Slmulatlons

Data Generation and Training : \ 4
——————————————— | - *== . T
: Step 1: Step 2 : | Ste.F I Step 4: 3D CNN Architecture Optimization
Samp ing y CAE simulation I Model Training| Model Deployment + Objective II: Non Linear Model
| 2... | I | * Obijective Ill: Model with High Discriminative
| } ability
: ACAE simulated Bayesian Deep Learning
ssembly Station S ) I
I * Objective IV: Uncertainty Quantification

CAE Simulation and Sampling
iy -ttt T i wiasiod piw i istoouon piintietete ettt |ttty i * Objective V: Data Augmentation using CAE

Simulations
Model Deployment 9,6() Outputs:
Real ; w [:
|:> Assembly Station : h : u
b , Y ’ 3D Aligned & Voxe//zed Pomt cloud f(x) ~ Isolated RC:y
Given unknown: y scanner (Object Shape Etrror) with uncertainty & (Y)

W
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02 Methodology

3D CNN Architecture Optimization

Current Proposed Rationale
Object Detection Methods (VoxNet) Object Shape Error Estimation
Single channel input 32 x 32 x 32 3 Multi-channel input 64 x 64 X 64 x 3 Increased granularity and shape error
Categorical outputs ﬁ Continuous outputs ﬁ Root Causes as six-sigma level of variation
Two 3D conv, one dense layer s Three 3D conv, three dense layers s Deformable parts, ill-conditioned systems, fault multiplicity
Deterministic Layers s Bayesian Flipout Layers s Uncertainty quantification to drive costly corrective actions
Inputs 3D Flipout Convolutional Layers with ReLU Flipout Dense Layers ' Outputs:
oTTfa]o[o]o 2mm> ",
- /o\ mml mm
fT{o[o|Tfza]o0 I | |
0 0 0 0 0 s Voxelized
|0|2-2|1|0|0| Shape Error
f(x) Shape Error f(x) Shape Error i

5,55 4, 3,3,3 "
S|ze(P’Q’R2‘: tzlz 2; 8 ; ;} {1’1 1} Max-pooling 128 64 6 output
Stride (LMN): 33 33 (222)  hidden  hidden  nodes
no. of filters m: nodes nodes




02 Methodology

Bayesian Deep Learning

U Bayesian deep learning enables uncertainty quantification hence integrating confidence in costly corrective decisions —
O Such cases of 3D CNN integration with Variational Inference Based Bayesian Deep Learning are limited

Challenge Proposed Training* changes to ensure convergence
Model convergence given 2 million , * Group normalization to account for small batch size
trainable parameters in the 3D CNN

» Learning rate annealing for kullback leibler Divergence Loss

6 Process Parameters Distributions

n - - i
LA | b A kA
Yy~ Np(p,X) |
Uncertainty due to
system noise

l—Wij = N(uyj, 045)

Uncertainty due to
insufficient data

!

Estimated by assuming each ) _
weight in the network follows a _ _ Estlma_lted _by assuming _the_ oquut follows
normal distribution Bayes-By-Backprop & Flipout Estimator a multi-variate normal distribution

|

Aleatoric Uncertainty
(Known Unknowns)

*Two Nvidia Tesla v100 32 GB GPUs are used for model training W

Epistemic Uncertainty
(Unknown Unknowns)

v

Uncertainty ¢(y) = Epistemic + Aleatoric

a




03 Industrial case study

Industrial Case Study: Assembly System Setup

Multi-stage assembly process for automotive
SUV door made of compliant parts

Door Inner Hinge Reinforcement © pin-Hole
S pin-Slot
B NC-Block

% NC-Block (2 Way)

~ @ofFixed Locators

©0Bparametrized
Locators

Six parametrized process parameters

High Resolution
Point Cloud Data

Challenges Case Study Conditions

10841 points

Deformable Parts

Two compliant parts with
part to part interactions

Six Sigma
Requirements

100% fault multiplicity, ill-
conditioned

IV.~ Costly Corrective Uncertainty quantification
Actions
V. No samples at

design stages

Use of CAE Simulations
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03 Industrial case study

<

ulti-Stage Assembly System

64

A
v

y

64 X 64 X 64 X 3

Stage 1 Positioning  Stage 2 Clamping Stage 3 Fastening* Stage 4 Release Voxelized
— S Point Cloud Data
Process Description Training Validation X
+2mm Parameter Range Range
Vi Pin-slot displacementin Xx | mm [-1,1] [-2,2]
Vs Pin-hole displacementin x [ mm [-1,1] [-2,2]
Va Pin hole displacementinz| mm [-1,1] [-2,2]
Va Clamp 1 displacementiny| mm [-2,2] [-4,4]
-2 mm Ve Clamp 2 displacementiny| mm [-2,2] [-4,4]
Ve Clamp 3 displacementiny| mm [-2,2] [-4,4]

*Self Piercing Riveting (SPR) is used as the fastening process W
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03 Industrial case study

Results

v U The threshold for Mean Absolute Error (MAE) is set at 0.05 mm as smaller variations cannot be detected by

. the 3D Optical Scanner
O R? > 0.95 verifies the non-linear and discriminable ability of the OSER methodology

Model performance across all process parameters: Model converges after training on 2000 samples
MAE =0.05 mm | R*=0.98 validation and testing is done on 500 samples
0.99 0.97 98 0.99 0.99 095 096 097 097 O. 0.98
o 1 i
& @ @ 1 i
e | owi | owd | wi 'u%
Y1 Y2 Y3 Ys Ye 600 800 1000 1200 1400 1600 1800 2000
[ e Number of Training Samples

[ B

W
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04 Benchmarking

Benchmarking — Fault Multiplicity

Comparison with currently used approaches for Root Cause Analysis

_‘O’_ On increasing fault multiplicity and including the effect of collinear process parameters i.e. parameters that
72" give a very similar object shape error pattern, the performance of state-of-the-art statistical linear models
decreases while OSER gives similar performance in all scenarios

Scenariol Scenario2 Scenario3 Scenario4 Scenario5 Scenario6

0.99 099 0.98 0.99| 0.97 0.99 0850'99 0.98 0.98
"/ ] b, Pt} P ":'E: . " e T
7 = Z & 2 L 0.79 0.76

SEIERIERIEE IR INR
% i % i % & % = 7 i %
7 & 7 i 7 = 7 & 7 = 7
7 i 7 & % = 7 = 7 = 7
IR IR IR IR I N
Y1 Y1,Y2 Y1.Y2,Y3 Y- Y4 Yur-¥s Y1, Ve
Parametrized Process Parameters
% State-of-the-art Eﬁg OSER approach
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04 Benchmarking

Benchmarking — Uncertainty Quantification

Currently used approaches for Root Cause Analysis do NOT quantify uncertainty
',QC OSER enables uncertainty quantification hence integrating confidence in costly corrective decisions
Histogram Plots for within-training and out-of-training

ranges exhibit the increased uncertainty for unseen
samples

Uncertainty* a(y) at 0.04 mm for within-training-range
samples and at 0.11 mm for out-of-training-range samples

0.04 0.04 0.04 0.06 I 0.05
0.02
mN B l

® Within training range & Outside training range 038 0.15 00s  -140 125

Process Parameter Distribution (y,)
Y1 Y2 Y3 Y4 Ys Ve '

*The uncertainty here is the Epistemic Uncertainty, the Aleatoric uncertainty is assumed to be constant (0.01 mm)W
given the level of noise in the system is constant
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04 Benchmarking

Benchmarking — Machine Learning Models

Comparison with currently Not used machine learning models

N

EI Upper limit on performance of current methods for RCA* is limited to 0.41 mm

2= Other non-linear machine learning models give good performance but are unable to meet the required MAE
threshold, quantify uncertainty and support other forms of learning

Accuracy |Goodness-of- Model Complexity Training : :
fit RZ) (no. of trainable Time Uncgrtalnty Contln_ual Trans_fer

Mean SD_| Mean Parameters) (minutes SStlEEs || el Healillal

*The upper bound on Current methods for RCA that use statistical linear models is estimated using regularized \/\/—I_
linear regression



04 Summary & Conclusions

Contributions & Applications

?;I - = A - -
% Contributions -()- Applications
Object Detection to Object Shape Error Estimation O RCA for other manufacturing processes
I. Object Shape Error Processing (stamping, machining, additive manufacturing etc.)
3D CNN Architecture Optimization Q Automated RCA
[I. Non linear Model Q Zero Defect Manufacturing
[1l. Model with high discriminative ability U Reduction of Cost of Quality
Bayesian Learning Approach O Cost efficient optimal corrective actions
IV. Uncertainty Quantification O Uncertainty based sampling
Integration with CAE simulations Q Learning at early design stages _
V. Data Augmentation using CAE Simulations U Shorten New Product Introduction (NPI) lead time

QO Right First Time & Continuous Improvement

W
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Multi-Station Assembly Systems

Multi-Station systems consist of multiple stations each having multiple number of stages

\©/
PAS EN
=

: 1
Station1 Yy ]
q( : } » Objects
point cloud
3 data:
Station 3 Y
Alignment l
: 2 .
Station 2 Object Shape

atonz Y JError: P

Q Assembly Station @ 3D Optical Scanner Voxelization l

- Assembly Stage (Functional Operation)
Voxelized Shape Error

] Part/Subassembly W
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Case Study: Cross Member Assembly

',QC 4 part, 3 station cross-member assembly is used for verification and validation of the model

yl
Station 1 Station 3 y3

0
X1 ‘ . 2 2
_ ‘ (xl’xZ) (Xi,x%xg;xi)

: : Pocket sub-assembly

Pocket Reinforcement

2 .2
Station 2 yz (.X'3, x4)
N 7

Cross Member

Cross-member assembly

l Alignment &
Voxelization

x2 @ Cross-member sub—assembly | Voxelized Shape Error:

Cross Member Reinforcement

W
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Methodology — Architecture Enhancement

',Q\‘For multi-station systems process parameters and object shape error of previous stations need to be predicted

2 .2
ﬂ S
I
Il

v

v

OSER: Voxelized Shape Error:
Attention based 3D U-Net o Station S,
) Architecture

Voxelized Shape Error:

} 2 .2
x2, x
Station S; (x3, x4)
3 .3.3 3 3 |
(1, X2 %3, X3) y'y?y . “f
) [— -

I
. . Voxeliz h Error:
Categorical Process Parameters Continuous Process Parameters oxelized Shape Erro

(Multi-label Classification) (Regression) Station S,

Process Parameters for all stations W
19




AY

3D Architecture Selection & Optimization

,QC The architecture is enhanced using a 3D U-Net Encoder Decoder architecture with three output heads

Voxelized 64
o4,
Point Cloud data Voxelized
with deviations l 64 Point Cloud data
3 with deviations for
N previous stations

Down sampling

UP sampling
and Fea?ure And Feature
extraction 16 aggregation

s | s

8
) s rareyaps
8

Global Average Pooling
1
in ——

| Categorical Process Continuous Process
Parameters Parameters
(Multi-label Classification) (Regression)

20



Results

The average MAE across all process parameters is 0.08 mm and the Average R? is 98% at 100% Fault
Multiplicity

0.996 0.999 0.992 0.997 0.962 0.977 0.973 0.999 0.993 0.999

Y1 Y2 Y3 Ya Ys Y6 Y7 Vs Yo Y10 Y11 Y12

M mae RMSE
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Results

The Model Converges after training on 2600 samples

0.95

0.95 97

97

97

0.16 0. 0.1 ) ) 0.1
0 | I e |
800 1100 1400 1700 2000 2300 2600

NUMBER OF TRAINING SAMPLES

0.1

[l
2900

0.1

[l
3200

3500

data_study_plot test.html

W
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Results

Object Shape Error Estimation accuracy for previous stages is at RMSE = 0.0012 and R?> = 0.96

% ) S &

Actual Predicted Actual Predicted
Station §; Station S,
MAE 0.0002 mm MAE 0.0012 mm
RMSE 0.002 mm RMSE 0.014 mm
R? 0.97 R? 0.96
R? Adjusted 0.97 R? Adjusted 0.96

W
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Ongoing & Future Research

Knowledge
Gap
Identification

OSER
Methodology
Development

Multi-Station
Assembly
Study

Architecture
Enhancement for
Multi-station
Systems

OSER-MAS
Methodology
Development

Scalability and
interpretability of
OSER-MAS using
transfer and
continual learning

(Ongoing)

Deep
Reinforcement
Learning for
Control &
Correction
(Future Work)
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Problem Formulation

Measurement
‘ VRM/ (Product Data) ‘ DS

Manufacturing System o cannet
T eaessessseseas 1
| I
Action | Sensing !

(Control/Change Process : Reward (Process Data, if available) -;
parameters) l I Point cloud Data
. Probabilistic . v
OSEC ) State Estimates OSER
(Agent/ Action) (State Estimates/ RCA)

W
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ODbjectives for control and Correction

System State that includes fault Costs of change of each process
parameter estimates and upstream parameter
shape errors

Rigidity of the system (design, Cost of quality of each KPI

pre-production, full-production)
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ODbjectives for control and Correction

Loss incurred due to KPIs not being at nominal Loss incurred due to change in KCCs

: s n P m :
i i pri ] AN il e | ?
Net Loss = ,'% z ZLKL{KPI]lVominal_KPITLniasured)zi + ’a:_'n; g]._(KCCéurrent State ~ KCCI(Iext State )
B B |

K' = KPI importance for ith KPI .
C/ = Cost Coef ficient for jth KCC

User-defined system
hyper parameters

A = System Rigidity

W
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3D Convolutions
Q‘ The Object Shape Error Feature extraction for compliant assemblies (Objects) is done using 3D Convolutions
B Why?
» Account for location of the deviation (x, y, z) for 3D geometries
« Extract spatial and shape error (Ax, Ay, Az) features for all components of deviations
« Extract 3D geometric variation features while account for interactions between axes
« Eliminate the need for manual feature extraction and approximations leading to information loss

7

Object Shape Error Feature Extraction
(3D Convolution)

x:{(x,y,2),(Ax,Ay,Az)} — {V}
Object Shape Error Voxelization

* The three components of deviation correspond to input channels characterising each voxel

Approximations that convert to 2D/2.5D representations have been shown to give limited performance



01 Introduction

Background — Data In Manufacturing

\ &
2

s ““ \

Data Source Data Resolution Data Collection/Generation
* Product Data * High Resolution * Physical System Data
* Points * 3D Point Cloud + Measurement Systems (Scanners, CMM)
* Images * Images * Process Sensors
+ Point Clouds * Low Resolution * Simulated Data
* Process Data * Points +  Computer Aided Engineering Simulations

*  Temperature
. Force [ Goal: Automated Root Cause Analysis (RCA) of assembly system j

W
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VoxNet Architecture

——__ PointCloud

,,»' Occupancy Grid 7|
/N o 7T 32x32%32 // \

Conv(32,5,2)
14x14x14

i Conv(32,3,1)+Pool(2)
@ 6x6x6
v
\ Full(128) \
v \

pedestrian . Full(K)/Output Toilet
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02 Methodology

Deployment

3D Optical Scanner Alignment Voxelization/ k \
=
1 1 Ject i
_____ > Reall Assembly Station e - o%?lgl((:)tud Shape Error )
with multiple stages p =
data X x = {V}
X - D
e
Unknown Process parameters : y g
L w
\o//

\Trained Model f(x)/

Process parameters y are estimated based on the Object
Shape Error x and the trained Bayesian 3D CNN model

Root Causes are inferred as a subset of process parameters y

W
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M eth 9) d 0O I o) gy 02 Methodology

E-j‘ Object Shape Error Response (OSER) has 4 steps and integrates Bayesian 3D
»” Convolutional Neural Networks (CNN) & Computer Aided Engineering (CAE) Simulations

Step 1 Step 2 Step 3 Step 4
77 ,
Object Shape Error 3D CNN Architecture Bayesian Deep Model Training and
Estimation Selection & Optimization Learning Deployment

Mathematical Objectives

I. Object Shape Error [. Non linear Model I1l. Uncertainty IV. Data Augmentation using
Estimation Il. Model with high Quantification Computer Aided Engineering
discriminative ability Simulation (CAE)

W
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02 Methodology

3D Convolutions

i The Object Shape Error Feature extraction for compliant assemblies (Objects) is done using 3D Convolutions

/;\
S

Such applications of 3D convolutions are limited* due to the requirement of a large dataset for training

* Only two major 3D CNN architectures exist: VoxNet — 3D Object Detection, 3D U-Net — Tissue Scan Segmentation W
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