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1. Introduction
• - Problem & motivation – Background

• - Challenges & objectives – Literature review

2. Methodology: Object Shape Error Response (OSER) 
• - Object shape error estimation – Transition from object detection to object shape error estimation

• - Framework – Bayesian deep learning and CAE simulation integration

• - 3D CNN Architecture Optimization – Extending traditional architectures used in object detection

• - Bayesian Deep Learning – Uncertainty quantification

3. Industrial case study: Automotive door assembly process
• - Assembly system setup

• - Results

4. Benchmarking and Discussion
• - OSER vs. current statistical models used for Root Cause Analysis (RCA)  in manufacturing

• - OSER vs. current machine learning models NOT used for Root Cause Analysis (RCA)  in manufacturing

5. Summary & Conclusions
- Contributions & applications
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Problem & Motivation

3D Optical ScannerMulti-Stage Assembly Station Quality requirements

Shorten NPI lead time

Zero Defect Manufacturing

Right First Time

01 Introduction

Process Parameters (𝒚):
(1) Locators; (2) Clamps; (3) joining

Object point cloud data

Object Shape Error (𝒙)

Problem: Product quality  detection of geometric errors

Positioning Clamping Fastening Release

Root Causes (subset of 𝒚):

any of the process parameters out of nominal 

Goal: Automated Root Cause Analysis (RCA) of geometric error during assembly 

Challenges

- High resolution point cloud data

- Deformable Parts

- Fault Multiplicity for 6-sigma

- Costly corrective actions

- No samples at design stages



Challenges & Objectives

II. Deformable parts

III. Fault multiplicity for Six Sigma 

IV. Costly corrective actions

V. No samples at design stages

II. Non-linear model

I. High resolution point cloud data

III. Model with high 

__|discriminative ability

IV. Uncertainty quantification

V. Data augmentation using 

__CAE Simulations

I. Object shape error estimation 

Challenges ObjectivesState-of-the-art Limitations

I. Not scalable to point cloud data

II. Statistical linear models

III. Consider single fault or  

__|orthogonal multiple faults

IV. No uncertainty quantification

V. Use limited sensor data

4

01 Introduction
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Object Shape Error Estimation

Current Approaches for 

Root Cause Analysis 
(statistical approaches)

⋯
⋮ ⋱ ⋮

⋯

× [2 3 2 1]

Current approaches for

Object Detection Methods 
(VoxNet)

0 0 1 1 0 0 0

0 1 0 0 1 1 0

1 0 0 0 0 0 1

𝑂𝑏𝑗𝑒𝑐𝑡 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑦 (𝑅𝑜𝑜𝑡 𝐶𝑎𝑢𝑠𝑒)

02 Methodology

Shape Error)𝒇(𝒙 Shape Error)𝒇(𝒙

2 mm 3 mm 2 mm
1 mm

Actual part with shape error

Nominal Part

Schematic Part Example of cross section with shape error

Limitations
- Only object detection

- Binary or RGB features

Limitations
- No scalable to point cloud data

- Single Fault / orthogonal m-faults

- Statistical linear models

Proposed

Object Shape Error Estimation
(deep learning approach)

𝑦 (𝑅𝑜𝑜𝑡 𝐶𝑎𝑢𝑠𝑒)

0 2 3 2 1 0 0

2 mm
3 mm

2 mm
1 mm

Shape Error)𝒇(𝒙

Example

Addressed in this paper
- High resolution point cloud data

- Fault Multiplicity for 6-sigma

- No samples at design stages
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Methodology

Step 1: 
Sampling 𝒚

Step 2:
CAE simulation

Step 3: 
Model Training

Step 4: 
Model Deployment

No

𝒚

൯𝒇(𝒙

𝒚, ෝ𝒚

ෝ𝒚, 𝝈(ෝ𝒚)

𝛔 ො𝐲 calculation to select next sample

𝒙, 𝒚

Data Generation and Training

Model Deployment

Given unknown: 𝒚

Error< eCAE simulated
Assembly Station

Real
Assembly Station M

3D 
scanner

Aligned & Voxelized Point cloud 
(Object Shape Error)

𝒙

)𝒇(𝒙 Isolated RC: ෝ𝒚
with uncertainty 𝛔 ො𝐲

Outputs:

...

Yes

02 Methodology

3D CNN Architecture Optimization
• Objective II: Non Linear Model

• Objective III: Model with High Discriminative 

ability

Bayesian Deep Learning
• Objective IV: Uncertainty Quantification

CAE Simulation and Sampling
• Objective V: Data Augmentation using CAE 

Simulations

Object Shape Error Response (OSER) is based on 

Bayesian 3D Convolutional Neural Networks (CNN) and Computer Aided Engineering (CAE) Simulations
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3D CNN Architecture Optimization

Inputs 3D Flipout Convolutional Layers with ReLU Outputs:Flipout Dense Layers

128 

hidden 

nodes

64 

hidden 

nodes

64

Max-pooling 

(2,2,2)
6 output

nodes

64

30

30

14

1

4

12
12 6

6

(4,4,4)
(2,2,2)

32

Filter 
Size(P,Q,R):

Stride (L,M,N):
no. of filters m:

(3,3,3)
(1,1,1)

32

(5,5,5)
(2,2,2)

32

Voxelized 

Shape Error

02 Methodology

Single channel input 32 × 32 × 32 Increased granularity and shape errorMulti-channel input 64 × 64 × 64 × 3

Categorical outputs Root Causes as six-sigma level of variationContinuous outputs

Two 3D conv, one dense layer Deformable parts, ill-conditioned systems, fault multiplicity Three 3D conv, three dense layers 

Deterministic Layers Uncertainty quantification to drive costly corrective actionsBayesian Flipout Layers

Current

Object Detection Methods (VoxNet)

Proposed

Object Shape Error Estimation
Rationale

0 0 1 1 0 0 0

0 1 0 0 1 1 0

1 0 0 0 0 0 1

Shape Error)𝒇(𝒙

0 2 3 2 1 0 0

2 mm
3 mm

2 mm
1 mm

Shape Error)𝒇(𝒙



Bayesian Deep Learning

Aleatoric Uncertainty

(Known Unknowns)

Epistemic Uncertainty

(Unknown Unknowns)

Estimated by assuming each 

weight in the network follows a 

normal distribution

Uncertainty 𝝈 ෝ𝒚 = Epistemic + Aleatoric

𝒘𝒊𝒋 = 𝑵(𝝁𝒊𝒋, 𝝈𝒊𝒋)
…

…

…

… 𝝁

𝚺

 Bayesian deep learning enables uncertainty quantification hence integrating confidence in costly corrective decisions –

 Such cases of 3D CNN integration with Variational Inference Based Bayesian Deep Learning are limited

6 Process Parameters Distributions

Uncertainty due to 

insufficient data

Estimated by assuming the output follows 

a multi-variate normal distribution

Uncertainty due to 

system noise

𝒚 ~𝒩ℎ(𝝁, 𝚺)

Bayes-By-Backprop & Flipout Estimator
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*Two Nvidia Tesla v100 32 GB GPUs are used for model training 

02 Methodology

Challenge Proposed Training* changes to ensure convergence 
Model convergence given 2 million 

trainable parameters in the 3D CNN
• Group normalization to account for small batch size

• Learning rate annealing for kullback leibler Divergence Loss 



Industrial Case Study: Assembly System Setup
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03 Industrial case study

𝒚𝟐

𝒚𝟑

𝒚𝟏

Door Inner

𝒚𝟒
𝒚𝟓

𝒚𝟔

Hinge  Reinforcement Pin-Hole

Pin-Slot
NC-Block 

NC-Block (2 Way)

Fixed Locators

Parametrized

Locators

Multi-stage assembly process for automotive 

SUV door made of compliant parts

Six parametrized process parameters

Challenges Case Study Conditions

I. High Resolution 

Point Cloud Data
10841 points

II. Deformable Parts
Two compliant parts with 

part to part interactions

III. Six Sigma 

Requirements 

100% fault multiplicity, ill-

conditioned

IV. Costly Corrective 

Actions
Uncertainty quantification

V. No samples at 

design stages
Use of CAE Simulations 
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Multi-Stage Assembly System

Stage 1 Positioning Stage 2 Clamping Stage 3 Fastening* Stage 4 Release Voxelized 

Point Cloud Data

𝒙

𝒚𝟓

𝒚𝟔

𝒚𝟒
𝒚𝟓

𝒚𝟔

𝒚𝟒

+ 2 mm

- 2 mm

𝒚𝟐

𝒚𝟑

𝒚𝟏

64

64

Process 

Parameter
Description Unit

Training 

Range

Validation 

Range

𝑦1 Pin-slot displacement in x mm [-1,1] [-2,2]

𝑦2 Pin-hole displacement in x mm [-1,1] [-2,2]

𝑦3 Pin hole displacement in z mm [-1,1] [-2,2]

𝑦4 Clamp 1 displacement in y mm [-2,2] [-4,4]

𝑦5 Clamp 2 displacement in y mm [-2,2] [-4,4]

𝑦6 Clamp 3 displacement in y mm [-2,2] [-4,4]

*Self Piercing Riveting (SPR) is used as the fastening process

03 Industrial case study

𝟔𝟒 × 𝟔𝟒 × 𝟔𝟒 × 𝟑
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Results

Model performance across all process parameters:

MAE = 0.05 mm |  𝑹𝟐 = 0.98 
Model converges after training on 2000 samples 

validation and testing is done on 500 samples

 The threshold for Mean Absolute Error (MAE) is set at 0.05 mm as smaller variations cannot be detected by 

the 3D Optical Scanner

 𝑹𝟐 > 0.95 verifies the non-linear and discriminable ability of the OSER methodology

03 Industrial case study
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Benchmarking – Fault Multiplicity

On increasing fault multiplicity and including the effect of collinear process parameters i.e. parameters that 

give a very similar object shape error pattern, the performance of state-of-the-art statistical linear models 

decreases while OSER gives similar performance in all scenarios

04 Benchmarking

Comparison with currently used approaches for Root Cause Analysis
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Benchmarking – Uncertainty Quantification

0.02
0.04 0.04

0.06 0.05 0.050.04

0.1 0.09

0.12 0.13

0.16

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

Within training range Outside training range

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟓𝒚𝟒 𝒚𝟔

Uncertainty* 𝝈(𝒚) at 0.04 mm for within-training-range 

samples and at 0.11 mm for out-of-training-range samples

Histogram Plots for within-training and out-of-training 

ranges exhibit the increased uncertainty for unseen 

samples

OSER enables uncertainty quantification hence integrating confidence in costly corrective decisions

*The uncertainty here is the Epistemic Uncertainty, the Aleatoric uncertainty is assumed to be constant (0.01 mm) 

given the level of noise in the system is constant

04 Benchmarking

Currently used approaches for Root Cause Analysis do NOT quantify uncertainty
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Benchmarking – Machine Learning Models 

Models

Accuracy

(MAE)

Goodness-of-

fit (𝑹𝟐)
Model Complexity

(no. of trainable 

Parameters)

Training 

Time

(minutes)

Uncertainty 

Estimates

Continual

Learning

Transfer 

Learning
Mean SD Mean SD

OSER

(Bayesian 3D CNN)
0.05 0.03 0.98 0.01 1,997,286 424 Yes Yes Yes

OSER

(3D CNN)
0.05 0.01 0.98 0.009 998,790 268 No No Yes

Gradient Boosted Trees 0.26 0.08 0.93 0.08 estimators: 300, depth 500 120 No No No

Artificial Neural Networks 0.28 0.09 0.91 0.07 2,809,222 358 No No No

Random Forests 0.29 0.09 0.92 0.08 estimators: 500, depth: 500 136 No No No

Support Vector 

Regression
0.38 0.09 0.85 0.1 32,524 180 No No No

Statistical Linear Models

(Current Methods)
0.41 0.01 0.76 0.01 32,524 10 No No No

 Upper limit on performance of current methods for RCA* is limited to 0.41 mm

 Other non-linear machine learning models give good performance but are unable to meet the required MAE 

threshold, quantify uncertainty and support other forms of learning

Comparison with currently Not used machine learning models

04 Benchmarking

*The upper bound on Current methods for RCA that use statistical linear models is estimated using regularized 

linear regression 
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04 Summary & Conclusions

Contributions & Applications
Contributions Applications

II. Non linear Model
III. Model with high discriminative ability

IV. Uncertainty Quantification

V. Data Augmentation using CAE Simulations

I. Object Shape Error Processing 

 Automated RCA 

 Zero Defect Manufacturing

 Reduction of Cost of Quality

 Learning at early design stages

 Shorten New Product Introduction (NPI) lead time

 Right First Time & Continuous Improvement

 Cost efficient optimal corrective actions 

 Uncertainty based sampling

3D CNN Architecture Optimization

Bayesian Learning Approach

Integration with CAE simulations

Object Detection to Object Shape Error Estimation  RCA for other manufacturing processes

(stamping, machining, additive manufacturing etc.) 
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Assembly Station

Assembly Stage (Functional Operation)

Part/Subassembly

3D Optical Scanner

𝒙𝟏
𝟎

𝒙𝟐
𝟎

(𝒙𝟏
𝟐, 𝒙𝟐

𝟐)

(𝒙𝟑
𝟐, 𝒙𝟒

𝟐)

(𝒙𝟏
𝟑, 𝒙𝟐

𝟑𝒙𝟑
𝟑, 𝒙𝟒

𝟑)

𝒙𝟑
𝟎

𝒙𝟒
𝟎

𝒚𝟑

Objects 
point cloud 

data:

M

Object Shape 
Error:

M

Alignment

Voxelization

Voxelized Shape Error

𝒚𝟏

𝒚𝟐
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Multi-Station Assembly Systems
Multi-Station systems consist of multiple stations each having multiple number of stages

Station 1

Station 2

Station 3
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Case Study: Cross Member Assembly
4 part, 3 station cross-member assembly is used for verification and validation of the model

Voxelized Shape Error:

Alignment & 
Voxelization

Pocket 

Pocket Reinforcement 

Cross Member

Cross Member Reinforcement

Pocket sub-assembly

Cross-member sub-assembly

Cross-member assembly

Station 1

Station 2

Station 3

𝒙𝟏
𝟎

𝒙𝟐
𝟎

(𝒙𝟏
𝟐, 𝒙𝟐

𝟐)

(𝒙𝟑
𝟐, 𝒙𝟒

𝟐)

(𝒙𝟏
𝟑, 𝒙𝟐

𝟑𝒙𝟑
𝟑, 𝒙𝟒

𝟑)

𝒙𝟑
𝟎

𝒙𝟒
𝟎

𝒚𝟑
𝒚𝟏

𝒚𝟐
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OSER: 

Attention based 3D U-Net 

Architecture

Voxelized Shape Error:

Station 𝑺𝟏

Voxelized Shape Error:

Station 𝑺𝟐

Process Parameters for all stations

Categorical Process Parameters

(Multi-label Classification)

Continuous Process Parameters

(Regression)

Voxelized Shape Error:

Station 𝑺𝟑

Methodology – Architecture Enhancement
For multi-station systems process parameters and object shape error of previous stations need to be predicted

(𝒙𝟏
𝟐, 𝒙𝟐

𝟐)

(𝒙𝟑
𝟐, 𝒙𝟒

𝟐)

(𝒙𝟏
𝟑, 𝒙𝟐

𝟑𝒙𝟑
𝟑, 𝒙𝟒

𝟑) 𝒚𝟑𝒚𝟏 𝒚𝟐
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3D Architecture Selection & Optimization
The architecture is enhanced using a 3D U-Net Encoder Decoder architecture with three output heads
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The average MAE across all process parameters is 0.08 mm and the Average 𝑹𝟐 is 98% at 100% Fault

Multiplicity

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟓𝒚𝟒 𝒚𝟔

MAE 𝑹𝟐

𝒚𝟕 𝒚𝟖 𝒚𝟗 𝒚𝟏𝟎 𝒚𝟏𝟏 𝒚𝟏𝟐

0.05 0.03 0.08 0.04 0.08 0.12 0.11 0.05
0.20 0.14 0.08 0.03

0.996 0.999 0.992 0.997 0.962 0.977 0.973 0.999 0.939 0.975 0.993 0.999

0.07 0.04 0.10 0.06 0.11 0.17 0.18
0.06

0.27
0.18

0.10 0.04

RMSE

Results
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0.23 0.18 0.16 0.15 0.15 0.13 0.13 0.12 0.12 0.11 0.12

0.8 0.93 0.95 0.95 0.96 0.96 0.97 0.97 0.97 0.97 0.97

500 800 1100 1400 1700 2000 2300 2600 2900 3200 3500

NUMBER OF TRAINING SAMPLES

The Model Converges after training on 2600 samples

Results
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MAE 0.0002 mm

RMSE 0.002 mm

𝑹𝟐 0.97

𝑹𝟐 Adjusted 0.97

MAE 0.0012 mm

RMSE 0.014 mm

𝑹𝟐 0.96

𝑹𝟐 Adjusted 0.96

Station 𝑆1 Station 𝑆2

Actual Predicted Actual Predicted

Results
Object Shape Error Estimation accuracy for previous stages is at 𝑹𝑴𝑺𝑬 = 𝟎. 𝟎𝟎𝟏𝟐 and 𝑹𝟐 = 𝟎. 𝟗𝟔



Ongoing & Future Research

Knowledge 
Gap 

Identification

OSER 
Methodology 
Development

Multi-Station 
Assembly 

Study

Architecture 
Enhancement for 

Multi-station 
Systems

OSER-MAS 
Methodology 
Development

Scalability and 
interpretability of 

OSER-MAS using 
transfer and 

continual learning

(Ongoing)

Deep 
Reinforcement 

Learning for 
Control & 
Correction 

(Future Work)
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VRM/

Manufacturing System
3D Scanner

OSER

(State Estimates/ RCA)

OSEC

(Agent/ Action)

Measurement

(Product Data)

Point cloud Data

Probabilistic 

State Estimates

Action 

(Control/Change Process 

parameters)
Reward

Sensing

(Process Data, if available)

Problem Formulation
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Objectives for control and Correction

System State that includes fault 

parameter estimates and upstream 
shape errors 

Costs of change of each process 

parameter

Cost of quality of each KPIRigidity of the system (design, 

pre-production, full-production)



Objectives for control and Correction

𝑁𝑒𝑡 𝐿𝑜𝑠𝑠 = 1
𝑠∗𝑛



𝑝=1

𝑠



𝑖=1

𝑛

𝐾𝑖(𝐾𝑃𝐼𝑁𝑜𝑚𝑖𝑛𝑎𝑙
𝑖 −𝐾𝑃𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑖,𝑝
)2 + 𝝀

1

𝑚


𝑗=1

𝑚

𝐶𝑗 𝐾𝐶𝐶𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒
𝑗

− 𝐾𝐶𝐶𝑁𝑒𝑥𝑡 𝑆𝑡𝑎𝑡𝑒
𝑗

2

Loss incurred due to KPIs not being at nominal Loss incurred due to change in KCCs

User-defined system 
hyper parameters

𝐾𝑖 = 𝐾𝑃𝐼 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑖𝑡ℎ 𝐾𝑃𝐼
𝐶𝑗 = 𝐶𝑜𝑠𝑡 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑗𝑡ℎ 𝐾𝐶𝐶

𝝀 = 𝑆𝑦𝑠𝑡𝑒𝑚 𝑅𝑖𝑔𝑖𝑑𝑖𝑡𝑦
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Appendix



3D Convolutions
The Object Shape Error Feature extraction for compliant assemblies (Objects) is done using 3D Convolutions

30
* The three components of deviation correspond to input channels characterising each voxel

02 Methodology

Approximations that convert to 2D/2.5D representations have been shown to give limited performance  

• Account for location of the deviation 𝑥, 𝑦, 𝑧 for 3D geometries

• Extract spatial and shape error (∆𝑥, ∆𝑦, ∆𝑧) features for all components of deviations

• Extract 3D geometric variation features while account for interactions between axes

• Eliminate the need for manual feature extraction and approximations leading to information loss   

Why?

𝒙: { 𝑥, 𝑦, 𝑧 , (∆𝑥, ∆𝑦, ∆𝑧)} → 𝑽
Object Shape Error Voxelization

Object Shape Error Feature Extraction

(3D Convolution)
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Background – Data in Manufacturing 

Data Resolution
• High Resolution 

• 3D Point Cloud

• Images

• Low Resolution

• Points 

Data Source 
• Product Data

• Points

• Images

• Point Clouds  

• Process Data 

• Temperature

• Force

Data Collection/Generation
• Physical System Data

• Measurement Systems (Scanners, CMM)

• Process Sensors

• Simulated Data

• Computer Aided Engineering Simulations

01 Introduction

Goal: Automated Root Cause Analysis (RCA) of assembly system
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VoxNet Architecture
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Deployment

Object 
point cloud 

data

𝑼𝒏𝒌𝒏𝒐𝒘𝒏 𝑷𝒓𝒐𝒄𝒆𝒔𝒔 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔 ∶ 𝒚

Real Assembly Station

with multiple stages 

Object 
Shape Error

𝒙
M

Alignment3D Optical Scanner Voxelization

𝒙 → 𝑽

Process parameters 𝐲 are estimated based on the Object 

Shape Error 𝒙 and the trained Bayesian 3D CNN model 

02 Methodology

Root Causes are inferred as a subset of process parameters 𝐲

Trained Model )𝒇(𝒙



34

Methodology
Object Shape Error Response (OSER) has 4 steps and integrates Bayesian 3D 

Convolutional Neural Networks (CNN) & Computer Aided Engineering (CAE) Simulations

Object Shape Error 

Estimation

Model Training and 

Deployment

Bayesian Deep 

Learning
3D CNN Architecture 

Selection & Optimization

I. Non linear Model

II. Model with high 

discriminative ability

I. Object Shape Error 

Estimation

III. Uncertainty 

Quantification

IV. Data Augmentation using 

Computer Aided Engineering 

Simulation (CAE)

Step 1 Step 2 Step 3 Step 4

Mathematical Objectives

02 Methodology



3D Convolutions
The Object Shape Error Feature extraction for compliant assemblies (Objects) is done using 3D Convolutions

35

Such applications of 3D convolutions are limited* due to the requirement of a large dataset for training

* Only two major 3D CNN architectures exist: VoxNet – 3D Object Detection, 3D U-Net – Tissue Scan Segmentation 

02 Methodology


