Object Shape Error Response (OSER) using Bayesian 3D Convolutional Neural Networks for Assembly Systems with Compliant Parts

Predicting and Preventing Manufacturing Defects

Presented by: Sumit Sinha Sumit Sinha, Pasquale Franciosa, Dariusz Ceglarek

Digital Lifecycle Management (DLM) WMG, University of Warwick, UK

Outline

1. Introduction

- Problem & motivation Background
- Challenges & objectives Literature review

2. Methodology: Object Shape Error Response (OSER)

- Object shape error estimation
- Framework
- 3D CNN Architecture Optimization
- Bayesian Deep Learning

- Transition from object detection to object shape error estimation
- Bayesian deep learning and CAE simulation integration
- Extending traditional architectures used in object detection
- Uncertainty quantification

3. Industrial case study: Automotive door assembly process

- Assembly system setup
- Results

4. Benchmarking and Discussion

- OSER vs. current statistical models used for Root Cause Analysis (RCA) in manufacturing
- OSER vs. current machine learning models NOT used for Root Cause Analysis (RCA) in manufacturing

5. Summary & Conclusions

- Contributions & applications

01 Introduction

Problem & Motivation

Problem: Product quality → detection of geometric errors

Goal: Automated Root Cause Analysis (RCA) of geometric error during assembly

Challenges & Objectives

02 Methodology

Object Shape Error Estimation

Methodology

Object Shape Error Response (OSER) is based on

Bayesian 3D Convolutional Neural Networks (CNN) and Computer Aided Engineering (CAE) Simulations

3D CNN Architecture Optimization

02 Methodology

Bayesian Deep Learning

Bayesian deep learning enables uncertainty quantification hence integrating confidence in costly corrective decisions –

Such cases of 3D CNN integration with Variational Inference Based Bayesian Deep Learning are limited

*Two Nvidia Tesla v100 32 GB GPUs are used for model training

03 Industrial case study

Industrial Case Study: Assembly System Setup

Multi-stage assembly process for automotive SUV door made of compliant parts

Six parametrized process parameters

	Challenges	Case Study Conditions			
Ι.	High Resolution Point Cloud Data	10841 points			
Ш.	Deformable Parts	Two compliant parts with part to part interactions			
111.	Six Sigma Requirements	100% fault multiplicity, ill- conditioned			
IV.	Costly Corrective Actions	Uncertainty quantification			
V.	No samples at design stages	Use of CAE Simulations			

Multi-Stage Assembly System

y₆ y₅ y₄

Stage 1 Positioning

Stage 2 Clamping

Stage 3 Fastening*

Voxelized Point Cloud Data

*Self Piercing Riveting (SPR) is used as the fastening process

The threshold for Mean Absolute Error (MAE) is set at 0.05 mm as smaller variations cannot be detected by the 3D Optical Scanner

 $R^2 > 0.95$ verifies the non-linear and discriminable ability of the OSER methodology

Model performance across all process parameters: $MAE = 0.05 \text{ mm} \mid R^2 = 0.98$

Model converges after training on **2000** samples validation and testing is done on 500 samples

Benchmarking – Fault Multiplicity

Comparison with currently used approaches for Root Cause Analysis

On increasing fault multiplicity and including the effect of collinear process parameters i.e. parameters that
 give a very similar object shape error pattern, the performance of state-of-the-art statistical linear models
 decreases while OSER gives similar performance in all scenarios

Benchmarking – Uncertainty Quantification

Currently used approaches for Root Cause Analysis do NOT quantify uncertainty

C OSER enables uncertainty quantification hence integrating confidence in costly corrective decisions

Uncertainty* $\sigma(y)$ at 0.04 mm for within-training-range samples and at 0.11 mm for out-of-training-range samples

Histogram Plots for within-training and out-of-training ranges exhibit the increased uncertainty for unseen samples

*The uncertainty here is the Epistemic Uncertainty, the Aleatoric uncertainty is assumed to be constant (0.01 mm) given the level of noise in the system is constant

Benchmarking – Machine Learning Models

Comparison with currently Not used machine learning models

Upper limit on performance of current methods for RCA* is limited to 0.41 mm Other non-linear machine learning models give good performance but are unable to meet the required MAE threshold, quantify uncertainty and support other forms of learning

Models	Accuracy (MAE)		Goodness-of- fit (<i>R</i> ²⁾		Model Complexity (no. of trainable	Training Time	Uncertainty Estimatos	Continual	Transfer
	Mean	SD	Mean	SD	Parameters)	(minutes)	LStimates	Learning	Leanning
OSER (Bayesian 3D CNN)	0.05	0.03	0.98	0.01	1,997,286	424	Yes	Yes	Yes
OSER (3D CNN)	0.05	0.01	0.98	0.009	998,790	268	No	No	Yes
Gradient Boosted Trees	0.26	0.08	0.93	0.08	estimators: 300, depth 500	120	No	No	No
Artificial Neural Networks	0.28	0.09	0.91	0.07	2,809,222	358	No	No	No
Random Forests	0.29	0.09	0.92	0.08	estimators: 500, depth: 500	136	No	No	No
Support Vector Regression	0.38	0.09	0.85	0.1	32,524	180	No	No	No
Statistical Linear Models (Current Methods)	0.41	0.01	0.76	0.01	32,524	10	No	No	No

*The upper bound on Current methods for RCA that use statistical linear models is estimated using regularized linear regression

Contributions & Applications

Contributions

-\[_______- Applications

Object Detection to Object Shape Error Estimation I. Object Shape Error Processing

RCA for other manufacturing processes (stamping, machining, additive manufacturing etc.)

3D CNN Architecture Optimization

II. Non linear Model III. Model with high discriminative ability

Bayesian Learning Approach IV. Uncertainty Quantification

- Automated RCA
 Zero Defect Manufacturing
 Reduction of Cost of Quality
- Cost efficient optimal corrective actions
 Uncertainty based sampling

Integration with CAE simulations V. Data Augmentation using CAE Simulations

- Learning at early design stages
- □ Shorten New Product Introduction (NPI) lead time
- □ Right First Time & Continuous Improvement

Object Shape Error Response (OSER) using Bayesian 3D U-Net for Multi-Station Assembly Systems with Non-Ideal Compliant Parts

Predicting and Preventing Manufacturing Defects

Presented by: Sumit Sinha Sumit Sinha, Pasquale Franciosa, Dariusz Ceglarek

Digital Lifecycle Management (DLM) WMG, University of Warwick, UK

Multi-Station Assembly Systems

C Multi-Station systems consist of **multiple stations** each having multiple number of stages

Methodology – Architecture Enhancement

For multi-station systems process parameters and **object shape error** of previous stations need to be predicted

3D Architecture Selection & Optimization

The architecture is enhanced using a **3D U-Net Encoder Decoder** architecture with three output heads

The average MAE across all process parameters is 0.08 mm and the Average R^2 is 98% at 100% Fault Multiplicity

The Model Converges after training on 2600 samples

Object Shape Error Estimation accuracy for previous stages is at RMSE = 0.0012 and $R^2 = 0.96$

Actual Predicted	Actual	Predicted			
Station S ₁	Stati	Station S ₂			
MAE 0.0002 mm	MAE	0.0012 mm			
RMSE 0.002 mm	RMSE	0.014 mm			
<u> </u>	R^2	0.96			
R ² Adjusted 0.97	R² Adjusted	0.96			

Ongoing & Future Research

Object Shape Error Correction (OSEC) using Deep Reinforcement Learning for Multi-Station Assembly Systems

Predicting and Preventing Manufacturing Defects

Presented by: Sumit Sinha Sumit Sinha, Pasquale Franciosa, Dariusz Ceglarek

Digital Lifecycle Management (DLM) WMG, University of Warwick, UK

Problem Formulation

Objectives for control and Correction

System State that includes fault parameter estimates and upstream shape errors Costs of change of each process parameter

Rigidity of the system (design, pre-production, full-production)

Cost of quality of each KPI

Objectives for control and Correction

Appendix

3D Convolutions Why?

- Account for location of the deviation (x, y, z) for 3D geometries •
- Extract spatial and shape error $(\Delta x, \Delta y, \Delta z)$ features for all components of deviations ٠
- Extract 3D geometric variation features while account for interactions between axes •
- Eliminate the need for **manual feature extraction** and approximations leading to information loss •

 $x: \{(x, y, z), (\Delta x, \Delta y, \Delta z)\} \to \{V\}$

Object Shape Error Voxelization

* The three components of deviation correspond to input channels characterising each voxel *Approximations that convert to 2D/2.5D representations have been shown to give limited performance*

Background – Data in Manufacturing

Data Source

- Product Data
 - Points
 - Images
 - Point Clouds
- Process Data
 - Temperature
 - Force

Data Resolution

- High Resolution
 - 3D Point Cloud
 - Images
- Low Resolution
 - Points

Data Collection/Generation

- Physical System Data
 - Measurement Systems (Scanners, CMM)
 - Process Sensors
- Simulated Data
 - Computer Aided Engineering Simulations

Goal: Automated Root Cause Analysis (RCA) of assembly system

VoxNet Architecture

Deployment

Root Causes are inferred as a subset of process parameters y

Methodology

Object Shape Error Response (OSER) has 4 steps and integrates Bayesian 3D Convolutional Neural Networks (CNN) & Computer Aided Engineering (CAE) Simulations

3D Convolutions

The Object Shape Error Feature extraction for compliant assemblies (Objects) is done using 3D Convolutions Such applications of 3D convolutions are limited* due to the requirement of a large dataset for training

* Only two major 3D CNN architectures exist: VoxNet – 3D Object Detection, 3D U-Net – Tissue Scan Segmentation