Benchmarking

Benchmarking is used to test the 3D CNN model with standard machine learning models. The utility comes with existing models but the user can add, remove or tweak models based on his requirement. Refer scikit learn for more information about the models: https://scikit-learn.org/stable/supervised_learning.html#supervised-learning

dlmfg.utilities.benchmarking.benchmarking_models(max_models)[source]

benchmarking_models returns a list of models and model names less that or equal to max_models

Parameters

max_models (int (required)) – maximum number of models

Returns

bn_models: list of models used for benchmarking

Return type

list

Returns

bn_models_name: list of model names used for benchmarking

Return type

list

dlmfg.utilities.benchmarking.benchmarking_models_eval(bn_models, point_data, kcc_dataset, assembly_kccs, bm_path, test_size)[source]

benchmarking_models_evals trains each of the model based on the dataset and returns

Parameters
  • bn_models – list of models to be benchmarked

  • point_data (numpy.array (samples*nodes) (required)) – input data consisting of node deviations

  • kcc_dataset (numpy.array (samples*kccs) (required)) – output data consisting of process parameters/KCCs

  • assembly_kccs (float (required)) – number of assembly KCCs

  • bm_path (str (required)) – Benchmarking path to save benchmarking results

  • test_size – The test size split

Returns

bn_metrics_eval: Benchmarking metrics

Return type

numpy.array [bn_models*kccs*metrics]