Source code for dlmfg.visualization.training_viz

"""
Generate Plot for model loss while training
tensorbaord is added as call back to model training
start tensorboard from terminal/cmd window using tensorboard --logdir ./logs
"""
[docs]class TrainViz: """contains method to generate loss convergence plot """
[docs] def training_plot(self, history,plots_path,run_id=0): """plot and save the training loss :param history:keras model training output dictionary :type history: dict (required) :param plots_path:plot path to save plot file :type plots_path: dict (required) :param run_id:Run identifier used in data study to id the training :type file_name: int """ import matplotlib.pyplot as plt #summarize history for Mean Absolute Error # plt.plot(history.history['mae']) # plt.plot(history.history['val_mae']) # plt.title('model MAE`') # plt.ylabel('MAE') # plt.xlabel('epoch') # plt.legend(['train', 'test'], loc='upper left') # plt.savefig(plots_path+'/'+'accuracy_'+str(run_id)+'.png') # plt.clf() # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.savefig(plots_path+'/'+'loss_'+str(run_id)+'.png') plt.clf()